

NAVIGATIONAL EQUIPMENT

Gp Capt Sameera Lankathilake MSc in Mgt, MSc in Def & Strat Stu, MSc in Def Stu (BAN), PGDM (Kelaniya); BSc (Def Stu) Elec & Elic Eng, AMIE (SL), psc

LEARNING OBJECTIVES

To ascertain the knowledge on Navigational Equipment

To appreciate a situation with better knowledge of technical limitations

To take strategic decisions on employment of airpower as a mean to reach the End State

NAVIGATION

Navigation is the art and science of moving from point "A" to point "B" in the least possible time without losing your way

Introduction

- Ground Based Navigation System
- Satellite Based Navigation System
- Other Navigation System

The techniques of Navigation depends on:

- Visual Flight Rules (VFR)
- Instrument Flight Rules (IFR)

VFR

Navigation accomplished primarily by visual reference to the ground

Requires at least 1000 ft. cloud ceiling and 3 miles of visibility

- Map reading
- Dead Reckoning

Basic pilot training/certification

IFR

Navigation accomplished primarily by reference to onboard instruments, electronic navigation aids, and Air Traffic Control

No weather minimums

More advanced pilot training/certification required

Radio Navigation

RADIO NAVIGATION

- Radio Navigation is navigating an aircraft though application of radio
- > The main principles
 - Direction By bearing or radio phrases
 - Distance By measuring of travel times

- ➤ NDB ADF
- > VOR
- ► ILS
- > DME

NDB – ADF

- Ground Station is 'Non Directional Beacon'
- Operating Frequency 190 kHz 1750 kHz

NDB – ADF

Fixed ground station provides basic "bearing to" information

Greater range but less precision than other methods

Aircraft can use signal to "home" on the station

NDB – ADF

M

ADF

ADF receive 2-3 digits Morse code Transmit

by NDB

ST/TI

OFF

FRQ

BFQ

NDB – ADF

ADF receive 2-3 digits Morse code Transmit by NDB

NDB – ADF

VOR

- VOR- VHF Omini directional Ranging
- Ground station is called 'VOR Station'
- Allows aircraft to determine magnetic bearing from VOR station
- Operating Freq. 108.0MHz 117.95MHz

VOR

VOR

ILS

- Marker Beacons
- Localizer
- Glide Slope

ILS - Marker Beacons

- Operating Frequency 75MHz
- Outer Marker (4.5nm)
- Middle Marker (3000ft)
- Inner Marker (1500ft)

ILS - Marker Beacons

ILS - Localizer

Operating Frequency 108MHz - 112 MHz (only on 100kHz Odd)

"Lobe comparison" principle

ILS - Localizer

150Hz

ILS – Glide Slope

Operating Frequency 328MHz – 335.4MHz

Guide the pilot to correct touch down point

ILS – Glide Slope

DME

- Ground Station is called 'DME Beacon'
- Operating Frequency 978 MHz 1213MHz
- Airborne equipment called 'DME Interrogator'
- ➤ TACAN is a military version of DME

Global Positioning System (GPS)

- Global Navigation Satellite System(GLONASS)
- BeiDuo Navigation Satellite System (BDS)

GPS

Accurate 3D positioning (Lat, Lon, Alt)

- Precise time wrt UTC
- Continuous operation
- Usable in hostile environment
- Min of 5 Sat are observable in any where in world

GLONASS

- Designed by Russian Aerospace Defence Force
- Precision Location
- All weather operation
- > 3 Orbits, 8 SAT in each
- Continuous operation
- Used with Russian
 Aviation industry

BDS

- Consist of 05 Geostationary Satellites (BeiDou -1)
- Complete project consist of 35 Satellites
- Location accuracy up to 10m
- Time accuracy up to 0.2 microsecond
- Two levels (Open and Restricted)
- Military version (Accuracy 10cm)

Doppler Navigation System (DNS)

Inertial Navigation System (INS)

DNS

Computes and displays ground speed and drift angle of an aircraft

Not based on a ground station

Utilizing the principle known as DOPPLER EFFECT

DNS

INS

- Self contained system
- Continuously measure the acceleration of aircraft
- All weather operation
- Consist with Three Gyros and Three accelerometers

INS

